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Sets

We study sets of natural numbers.

A set Z ⊆ N can be identified with an infinite string
over {0, 1}.
If Z is co-infinite, it can also be identified with a
real number in [0, 1)R.
Example. We identify

The set Z = {2n : n ∈ N}
the infinite string 10101010 . . .
the real number 0.101010 . . . = 2/3.
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Two aspects of randomness

The intuitive concept of randomness for a set Z has two related
aspects:

(a) Z satisfies no exceptional properties, and
(b) Z is hard to describe.

In an attempt to find formal counterparts for the intuitive
concept of randomness, at first we will consider each aspect
separately.
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(A) Exceptional properties are null classes

Think of the set Z as the overall outcome of an idealized
physical process that proceeds in time, producing infinitely
many bits. (For instance, the two-slit experiment in
quantum physics.)
The bits are independent, and zero and one have the
same probability. The probability that a string σ ∈ {0, 1}∗ is
an initial segment of Z is 2−|σ|.
Given this view, exceptional properties are represented by
null classes C, namely λC = 0, where λ is the uniform outer
measure on Cantor space {0, 1}N.
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Examples

Some examples of exceptional properties of a set Y .
Having every other bit zero:

∀i Y (2i) = 0.

Having at least twice as many zeros as ones in the limit:

lim inf |{i < n : Y (i) = 0}|/n ≥ 2/3.

The corresponding classes are null, so they should not contain
a random set.
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Restricting null classes

In order to obtain a sound formal definition of randomness,
we have to restrict the classes that have to be avoided.
Otherwise, no set Z would be random at all, because the
singleton {Z} itself is a null class.
To do so, an effectivity or a definability requirement of
some kind is imposed on the class. For instance, we could
require that the null class is Π0

2. This would include the
classes given by the properties above; {Y : ∀i Y (2i) = 0}
is even Π0

1.
Here, a Π0

2-class is a class of the form
{X ∈ {0, 1}N : ∀n∃k S(n, X �k )},

where S is a computable relation.
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(B) Being hard to describe

A random object has no patterns, is disorganized. The intuition
in that some degree of organization would make the object
easier to describe.
For finite binary strings, the intuitive notion of randomness can
be identified with being hard to describe.

This is so because there are description systems
(universal machines) that describe every possible string.
Being hard to describe for strings can be formalized by
incompressibility with respect to a universal machine, and
incompressible strings have the properties one typically
expects from a random string.
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Close descriptions

For sets, the intuition still is:
being organized implies being easier to describe.
However, we cannot formalize being hard to describe in such a
simple way as we did for strings, since each description system
only yields countably many sets and misses out on all the rest.
To make more precise what is meant by being hard to describe,
we need a type of close descriptions, which could for instance
be the Π0

1 null classes, or the Π0
2 null classes. A set is hard to

describe, in a particular sense (say Π0
2 classes) if it does not

admit a close description in that sense (for instance, it is not in
any Π0

2 null class).
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Formal notions of randomness

We will now formalize the intuitive notion of randomness.

(A) if random means typical, we need a restricting condition on
null classes.

(B) if random means being hard to describe, we need a formal
notion of close description.
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Tests

Both are given by specifying a test concept. This determines a
formal randomness notion: Z is random, in that specific sense,
if it passes all the tests of the given type.

Tests are themselves objects that can be described in a
particular way; thus only countably many null classes are given
by such tests.

If (An)n∈N is a list of all null classes of that kind, then the class
of random sets is {0, 1}N −

⋃
nAn and has uniform measure 1.

For strings, the analogue of this is: most strings of each length
are incompressible.
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Martin-Löf-tests

A ML-test is a uniformly computably enumerable sequence
(Gm)m∈N of open sets such that ∀m ∈ N λGm ≤ 2−m.
Z is ML-random if Z passes each ML-test, in the sense
that Z 6∈

⋂
m Gm.
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Machines and K

A machine is a partial recursive function M : {0, 1}∗ 7→ {0, 1}∗.
M is prefix free if its domain is an antichain under inclusion of
strings.
Let (Md)d≥0 be an effective listing of all prefix free machines.
The standard universal prefix free machine U is given by

U(0d1σ) = Md(σ).

The prefix free version K (y) of Kolmogorov complexity is the
length of a shortest prefix free description of y :

K (y) = min{|σ| : U(σ) = y}.
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Facts and examples

Example of a ML-random set:

Ω =
∑

U(σ)↓ 2−|σ|,

where U is the universal prefix free machine. (Recall we view
reals in [0, 1) as subsets of N via the binary representation.)

Theorem (Schnorr 1971)

Z is Martin-Löf random iff for some c, ∀n K (Z �n) ≥ n − c.
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Schnorr randomness

A Schnorr test is a ML-test (Gm)m∈N such that λGm is
computable, uniformly in m.
Z is Schnorr random if Z passes each Schnorr test, in the
sense that Z 6∈

⋂
m Gm.

Each ML-random is Schnorr random, but not conversely.
There even is a left-c.e. counter example.
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Computable measure machines

A prefix free machine M is called computable measure
machine if its halting probability ΩM =

∑
M(σ)↓ 2−|σ| is a

computable real number.
Recall Z is Martin-Löf random iff for some c,
∀n K (Z �n) ≥ n − c. The following is an analog for Schnorr
randomness. Since there is no universal computable measure
machine, we have to quantify over all of them.

Theorem (Downey, Griffiths, 2005)
Z is Schnorr random iff for each computable measure machine,
for some c, ∀n KM(Z �n) ≥ n − c.
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Low for K

Andrej A. Muchnik (1999) defined A to be low for K if

∀y K (y) ≤ K A(y) + O(1).

He proved that there is a c.e. noncomputable A
that is low for K .
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Low for ML-random

Let MLRand denote the class of Martin-Löf-random sets.

Because an oracle A increases the power of tests,
MLRandA ⊆ MLRand.
A is low for ML-random if MLRandA = MLRand
(Zambella, 1990).

By Schnorr’s Theorem relativized,

MLRand can be defined in terms of K , and
MLRandA in terms of K A.

So low for K implies low for ML-random.
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Low for K = Low for ML = base for ML

Theorem (Nies 2003)
A is low for ML-randomness ⇔ A is low for K .

A is a base for ML-randomness if A can be computed from a
set ML-random relative to A.
Each low for ML-random set is a base for ML-randomness, by
the Kučera-Gacs Theorem.

Theorem (Hirschfeldt, Nies, Stephan, 2005)
If A is a base for ML-randomness, then A is low for K .
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Low for computable measure machines

The following is a Schnorr analog of being low for K . However,
the definition is more complicated because there is no universal
computable measure machine.

Definition
A is low for computable measure machines if for each
computable measure machines MA relative to A, there is
a computable measure machines N such that

∀x KN(x) ≤ KMA(x) + O(1).
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Low for Schnorr

Let SR denote the class of Schnorr-random sets. A is low for
Schnorr-randomness if SRA = SR.
Terwijn and Zambella 2000 proved indirectly that there are 2ℵ0

many; see below.

Theorem (Downey, Greenberg, Mikhailovich, Nies 2005)

A is low for ML-randomness ⇔ A is low for computable
measure machines.

Schnorr randomness can be characterized in terms of
computable measure machines, relative to each oracle, so the
direction ⇐ is clear.
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Bases for Schnorr-randomness

A is a base for Schnorr-randomness if A can be computed from
a set Schnorr-random relative to A.

Clearly each low for Schnorr random set is a base for Schnorr
randomness.

But there are more bases for Schnorr randomness.

For instance, each ∆0
2 set that fails to be diagonally

noncomputable is a base for Schnorr randomness (even for
computable randomness, a notion in between ML and Schnorr),
by Hirschfeldt, Nies, Stephan, 2005.

On the other hand, a noncomputable set that is low for Schnorr
randomness is not ∆0

2, as we will see shortly.
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Computably traceable

Recall A is of hyper-immune free degree if each f ≤T A is
computably bounded.

Being computably traceable strengthens the property that
A is of hyper-immune free degree:
for each f ≤T A: for all x , f (x) is in a small effectively given
set Dg(x). Here Dn ⊆ N is the n-th finite set.
Here, g is a computable function depending on f , but
|Dg(x)| ≤ h(x) for a fixed computable bound h.
it turns out that the choice of the bound h is irrelevant, as
long as h is nondecreasing and unbounded.

André Nies The University of Auckland Randomness, computability, effective descriptive set theory



Randomness
Lowness properties

Effective descriptive set theory

for ML-randomness
for Schnorr-randomness
Traceability

Existence of computably traceable sets

Theorem (Terwijn and Zambella 2000)

There are 2ℵ0 many computably traceable sets.

To prove this, essentially one uses Sacks forcing with
computable perfect trees.
Each generic set for this forcing notion is computably traceable.
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Computably traceable= Low for Schnorr tests

A is low for Schnorr tests if for each Schnorr test (GA
m)m∈N

relative to A, there is a Schnorr test (Sn)n∈N such that⋂
m Gm ⊆

⋂
n Sn.

This implies being low for Schnorr.

Theorem (Terwijn and Zambella 2000)
A is low for Schnorr tests ⇔ A is computably traceable.

In particular, 2ℵ0 many sets are low for Schnorr randomness.
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Computably traceable= Low(SR)

The result was improved later, eliminating the mention of tests.

Theorem (Kjos-Hanssen, Nies, Stephan 2005)
A is low for Schnorr-randomness ⇔ A is computably traceable.

To show A is low for ML-randomness ⇔ A is low for computable
measure machines, Downey e.a. 2005 made use of the
Terwijn/Zambella result. Given that, it was sufficient to prove:

Lemma
A is computably traceable ⇒ A is low for computable measure
machines.
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Strongly jump traceable sets

Given the characterization of low for Schnorr randomness via
computable traceability, one might hope such a thing can also
be done for lowness for ML-randomness.

Let We be the e-th c.e. set. Let JA(e) be the value of the
A-jump at e, namely, JA(e) = Φe(e).

A c.e. trace with bound h is a sequence (Wg(n))n∈N, where g is
a computable function and |Wg(x)| ≤ h(x) for each x .

Figueira, N, Stephan (2004) called A strongly jump traceable if
for each order function h, there is a c.e. trace (Wg(n))n∈N with
bound h such that JA(e) ∈ Wg(e) whenever it is defined.
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A proper subclass of the low for ML-random sets

Theorem (Figueira, N, Stephan 2004)
There is a c.e. noncomputable strongly jump traceable set.

They also prove that A is strongly jump traceable ⇔ A is
“lowly” for the plain Kolmogorov complexity C, namely, for every
order function h and almost every x , C(x) ≤ CA(x) + h(CA(x)).

SJT doesn’t characterize low for K , but it is closely related.

Theorem (Cholak, Downey, Greenberg 2006)

The c.e. strongly jump traceable sets form a proper subideal of
the low for K sets.

It is open whether this also holds within the ∆0
2 sets.
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K -trivial and facile sets

A set A is K -trivial if ∀n K (A�n) ≤+ K (n) + b
(here ≤+ means ≤ up to an additive constant).

Theorem
A is low for K ⇔ A is K -trivial.

(This was obtained joint with Hirschfeldt, via a modification of
Nies’ result that K -trivial sets are closed downward under ≤T .)
h : N → N is an order function if h is computable,
nondecreasing and unbounded.
Z is facile if ∀n K (Z �n| n) ≤+ h(n), for any order function h.

Theorem (Kjos-Hanssen & Nies)
Let A be of hyper-immune free degree. Then
A is computably traceable ⇔ A is facile.
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Π1
1 sets of numbers are a high-level analog of c.e. sets, where

the steps of an effective enumeration are recursive ordinals.
Hjorth and Nies (Proc. LMS, ta) have studied the analogs of K
and of ML-randomness based on Π1

1-sets.
The analog of Schnorr’s Theorem holds (the proof takes
considerable extra effort because of limit stages).
There is a Π1

1 set of numbers which is K -trivial (in this new
sense) and not hyperarithmetic. In contrast:

Theorem (Hjorth and Nies)

If A is low for Π1
1-ML-random, then A is hyperarithmetic.
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Definition

A class C ⊆ 2N is Π1
1 iff there is a functional Ψ such that

for each Z , ΨZ is a (code for a) linear order with domain N,
and
Z ∈ C ⇔ ΨZ wellordered.

We think of the length of ΨZ as the stage when Z enters C.

Definition

A class C ⊆ 2N is ∆1
1 if C and 2N − C are Π1

1.
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1-randomness

Martin-Löf (1970) suggested to use the ∆1
1 null classes as tests:

Definition

Z is ∆1
1-random if Z is in no null ∆1

1-class.

∆1
1-random is the effective descriptive set theory analog of both

computably random and Schnorr random.

Π1
1-ML-random implies ∆1

1-random but not conversely.
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Theorem (Chong, N and Yu)

low for ∆1
1 random ⇔ ∆1

1 traceable ⇔ Π1
1 traceable.

This helps to prove existence outside the hyperarithmetic sets.

Theorem (Chong, N and Yu)

There is a perfect class of sets that are low for ∆1
1-randomness.

It suffices to prove that any Sacks generic (for forcing with
hyperarithmetical perfect trees) is ∆1

1 traceable.
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